summ()
prints output for a regression model in a fashion
similar to summary()
, but formatted differently with more options.
Usage
# S3 method for class 'rq'
summ(
model,
scale = FALSE,
confint = getOption("summ-confint", FALSE),
ci.width = getOption("summ-ci.width", 0.95),
se = c("nid", "rank", "iid", "ker", "boot"),
boot.sims = 1000,
boot.method = "xy",
vifs = getOption("summ-vifs", FALSE),
digits = getOption("jtools-digits", 2),
pvals = getOption("summ-pvals", TRUE),
n.sd = 1,
center = FALSE,
transform.response = FALSE,
data = NULL,
model.info = getOption("summ-model.info", TRUE),
model.fit = getOption("summ-model.fit", TRUE),
model.coefs = getOption("summ-model.coefs", TRUE),
which.cols = NULL,
...
)
Arguments
- model
A
rq
model. At this time,rqs
models (multipletau
parameters) are not supported.- scale
If
TRUE
, reports standardized regression coefficients by scaling and mean-centering input data (the latter can be changed via thescale.only
argument). Default isFALSE
.- confint
Show confidence intervals instead of standard errors? Default is
FALSE
.- ci.width
A number between 0 and 1 that signifies the width of the desired confidence interval. Default is
.95
, which corresponds to a 95% confidence interval. Ignored ifconfint = FALSE
.- se
One of "nid", "rank", "iid", "ker", or "boot". "nid" is default. See
quantreg::summary.rq()
documentation for more about these options.- boot.sims
If
se = "boot"
, the number of bootstrap replications to perform. This is passed as theR
argument toboot.rq
- boot.method
If
se = "boot"
, the type of bootstrapping method to use. Default is "xy", but seequantreg::boot.rq()
for more options.- vifs
If
TRUE
, adds a column to output with variance inflation factors (VIF). Default isFALSE
.- digits
An integer specifying the number of digits past the decimal to report in the output. Default is 2. You can change the default number of digits for all jtools functions with
options("jtools-digits" = digits)
where digits is the desired number.- pvals
Show p values? If
FALSE
, these are not printed. Default isTRUE
.- n.sd
If
scale = TRUE
, how many standard deviations should predictors be divided by? Default is 1, though some suggest 2.- center
If you want coefficients for mean-centered variables but don't want to standardize, set this to
TRUE
. Note that setting this to false does not affect whetherscale
mean-centers variables. Usescale.only
for that.- transform.response
Should scaling/centering apply to response variable? Default is
FALSE
.- data
If you provide the data used to fit the model here, that data frame is used to re-fit the model (if
scale
isTRUE
) instead of thestats::model.frame()
of the model. This is particularly useful if you have variable transformations or polynomial terms specified in the formula.- model.info
Toggles printing of basic information on sample size, name of DV, and number of predictors.
- model.fit
Toggles printing of model fit statistics.
- model.coefs
Toggles printing of model coefficents.
- which.cols
Developmental feature. By providing columns by name, you can add/remove/reorder requested columns in the output. Not fully supported, for now.
- ...
Among other things, arguments are passed to
scale_mod()
orcenter_mod()
whencenter
orscale
isTRUE
.
Details
This method implements most of the things I think most users would
asking summary.rq
for. hs
, U
, and gamma
are ignored.
Note that when using se = "rank"
, there are no standard errors,
test statistics, or p values calculated.
About the R1 fit statistic: Described in Koenker & Machado (1999), this offers an interpretation similar to R-squared in OLS regression. While you could calculate R-squared for these models, it goes against the underlying theoretical rationale for them. Koenker himself is not a big fan of R1 either, but it's something. See Koenker & Machado (1999) for more info.
References
Koenker, R., & Machado, J. A. F. (1999). Goodness of fit and related inference processes for quantile regression. Journal of the American Statistical Association, 94, 1296–1310. https://doi.org/10.1080/01621459.1999.10473882
See also
Other summ:
summ.glm()
,
summ.lm()
,
summ.merMod()
,
summ.svyglm()
Examples
if (requireNamespace("quantreg")) {
library(quantreg)
data(engel)
fitrq <- rq(income ~ foodexp, data = engel, tau = 0.5)
summ(fitrq)
}
#> Loading required package: SparseM
#>
#> Attaching package: ‘SparseM’
#> The following object is masked from ‘package:Matrix’:
#>
#> det
#>
#> Attaching package: ‘quantreg’
#> The following object is masked from ‘package:survival’:
#>
#> untangle.specials
#> MODEL INFO:
#> Observations: 235
#> Dependent Variable: income
#> Type: Quantile regression
#> Quantile (tau): 0.5
#> Method: Barrodale-Roberts
#>
#> MODEL FIT:
#> R¹(0.5) = 0.64
#>
#> Standard errors:Sandwich (Huber)
#> --------------------------------------------------
#> Est. S.E. t val. p
#> ----------------- -------- ------- -------- ------
#> (Intercept) -14.96 28.69 -0.52 0.60
#> foodexp 1.55 0.06 26.66 0.00
#> --------------------------------------------------